The Leading Role of Membrane Ca²⁺-ATPase in Recovery of Ca²⁺ Homeostasis after Glutamate Shock

T. P. Storozhevykh, V. G. Pinelis, N. P. Vinskaya, A. M. Surin*, and B. I. Khodorov*

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 135, No. 2, pp. 162-165, February, 2003 Original article submitted April 25, 2002

Combined blockade of Na⁺/Ca²⁺ exchange, Ca²⁺ uptake by mitochondria and endoplasmic reticulum usually does not prevent recovery of the basal level of intracellular Ca²⁺ after 1-min action of glutamate (100 μ M) or K⁺ (50 mM). However, replacement of Ca²⁺ with Ba²⁺, which cannot be transported by Ca²⁺-ATPase, considerably delayed the decrease in intracellular Ba²⁺ after its rise caused by glutamate or potassium application in all examined cells, which attest to an important role of Ca²⁺-ATPase in Ca²⁺ extrusion after the action of glutamate or K⁺.

Key Words: neuron; glutamate; neurotoxicity; Ca²⁺-ATPase; Na⁺/Ca²⁺-exchange

Intensive stimulation of glutamate (Glu) receptors, e.g. caused by cerebral ischemia, induces neuronal damage and death, due to disturbed recovery of the low level of intracellular Ca2+ ([Ca2+]i) after termination of Glu exposure [8,12]. It is established that Ca²⁺ is transported from nerve cells by two ATP-dependent membrane systems: Ca²⁺-ATPase and Na⁺/ Ca²⁺-exchanger [3,5,11]. We previously demonstrated that inhibition of Ca²⁺-ATPase at alkaline pH (pH of bathing solution 8.5) markedly decelerated [Ca²⁺]_i decrease during recovery after Glu exposure [9]. Here we evaluated the contribution of Ca²⁺-pump into the recovery of basal [Ca²⁺]; after glutamate exposure. To this end two approaches were used: 1) combined inhibition of all Ca²⁺-regulatory systems except Ca²⁺pump (inhibition of Na⁺/Ca²⁺-exchange by replacing Na⁺ in incubation saline with Li⁺, inhibition of mitochondrial Ca²⁺ uptake with respiration uncoupler dinitrophenol (DNP), and inhibition of Ca²⁺ uptake by endoplasmic reticulum with cyclopiazonic acid, an inhibitor of reticular Ca²⁺-ATPase); 2) replacement of

Laboratory of Membranology, Research Center of Children Health, Russian Academy of Medical Sciences; *Institute of General Pathology and Pathological Physiology, Russian Academy of Medical Sciences, Moscow. *Address for correspondence:* tstor@mail.ru. Storozhevykh T. P.

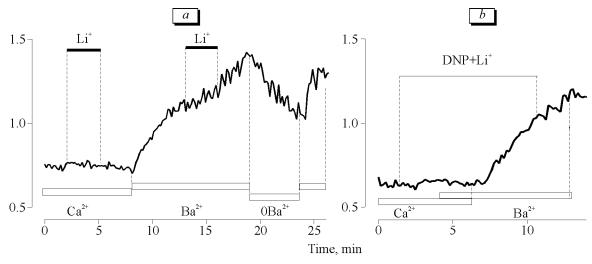
 Ca^{2+}_{o} in the incubation medium with Ba^{2+} , which can enter the cell via all Ca^{2+} channels, including Gludependent channels [2,7,14], but cannot be transported by P-type ATPases [6]. Ba^{2+} can replace Ca^{2+} in Na^+/Ca^{2+} -exchanger, but the efficiency of Ba^{2+} transport is almost 2-fold lower than that of Ca^{2+} [4]. Replacement of Ca^{2+}_{o} with Ba^{2+} simulated inhibition of Ca^{2+} -ATPase of the plasmalemma in a Ca^{2+} -containing medium.

MATERIALS AND METHODS

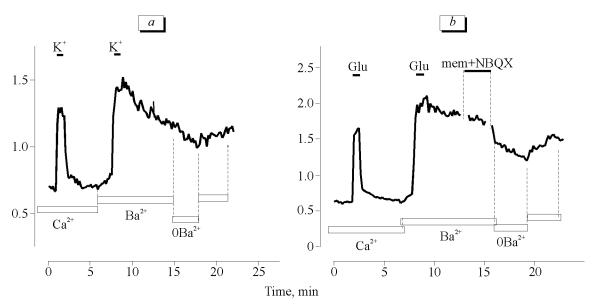
The study was carried out on 7-9-day-old primary culture of cerebellar granular cells isolated from 1-week-old Wistar rat pups [1]. [Ca²+]_i and [Ba²+]_i were measured on a Spex Microfluorimeter (Spex) connected to an inverted microscope (Nikon) and image analysis system (Diamorph). The cells were loaded with Ca²+sensitive probe Fura-2/AM (4 µM) for 40 min, and then the culture medium was replaced with a buffer containing (in mM): 130.0 NaCl, 5.6 KCl, 1.8 CaCl₂, 1.0 MgCl₂, 5.0 glucose, and 20.0 HEPES (pH 7.4). The cells on coverslips were placed in a 200-µl perfused chamber mounted on microscopic stage. In Na⁺-free solutions NaCl was replaced with 130 mM LiCl (pH was adjusted to 7.4 with LiOH). In Ba²+-containing solutions calcium ions were replaced with Ba²+. The

fluorescent signal from Fura-2 bound to Ca^{2+} or Ba^{2+} was recorded at the emission wavelength of 505±10 nm and two excitation wavelengths of 350 and 390 nm [4]. Relative changes of $[Ca^{2+}]_i$ and $[Ba^{2+}]_i$ were evaluated by the ratio F_{350}/F_{390} . Preliminary tests in a cell-free medium proved reversible binding of Fura-2 with both Ca^{2+} and Ba^{2+} .

The probes and chemicals were from Sigma, Molecular Probe, and Fluka.


RESULTS

Replacement of Ca²⁺₀ with Ba²⁺ in the incubation medium induced a slow increase in Fura-2 fluorescence in resting neurons, which attested to accumulation of Ba²⁺ in the cytoplasm (Fig. 1, a). Blockade of Na⁺₀/ Ca²⁺;-exchange by replacing of Na⁺₀ with Li⁺ had no effect on the basal [Ca²⁺]_i. Similar replacement in Ba²⁺ solution produced no extra increase in [Ba²⁺]_i, which attested to the absence of intracellular Ba2+-Na10 exchange under these conditions. Removal of Ba²⁺ from the incubation medium (addition of 200 µM EDTA) induced a gradual decrease in [Ba²⁺], which probably resulted from unmasking the direct mode of Na⁺/Ba²⁺exchange (Na₀/Ba₁) due to termination of Ba₂ entry via ionic channels and reversal (Na⁺_i/Ba²⁺₀) exchange. Figure 1, b shows that blockade of Na⁺/Ca²⁺-exchange produced no effect on the basal level of [Ca²⁺]_i in neurons even when Ca²⁺ uptake by mitochondria was blocked with DNP. However, the following replacement of Ca^{2+}_0 in the medium with Ba^{2+} (Fig. 1, b) produced a gradual increase of Fura-2 fluorescence (n=27). Thus, replacement of Ca²⁺ with Ba²⁺ revealed the key role of plasma membrane Ca²⁺-ATPase in the control of [Ca²⁺]_i in resting neurons, which agrees with current views on its role in Ca²⁺-homeostasis in neurons [3,11].


In the next experimental series, we examined the potency of neurons to restore the initial level of fluorescence after short-term application of 50 mM K⁺ or Glu in a Ba²⁺-containing saline. Replacement of Ca²⁺₀ with Ba²⁺ markedly decelerated the drop of fluorescence after its rise in response to a 1-min potassiuminduced depolarization (Fig. 2, a). After 1-min application of 100 µM Glu (together with 10 µM glycine in Mg²⁺-free saline), no decrease in [Ba²⁺], was observed in 31 of 43 cells (Fig. 2, b), and in other cells it was comparable with the drop of [Ba²⁺], observed after K⁺ application. Removal of Ba²⁺ from the medium with 200 µM EDTA produced only a minor effect on this process (Fig. 2), which attests to a negligible increment in membrane permeability for Ba²⁺ immediately after termination of neuron stimulation. It should be noted that the blocker of NMDA and AMPA subtypes of Glu-receptor channels memantine (25 µM) and NBQX (75 μ M) had no effect on the rate of $[Ba^{2+}]_i$ decrease after glutamate application (Fig. 2, b). Thus, the slow rate of [Ba²⁺], decrease was not caused by endogenous Glu.

Therefore, inability of Ca²⁺-ATPase to transport Ba²⁺ ions from neurons markedly decelerated recovery of basal fluorescence after potassium-induced depolarization and almost completely blocked this process in most cells after application of Glu. Weak dependence of this effect on external Ba²⁺ showed that it is caused namely by a decrease in Ba²⁺ extrusion and not by inward transport of Ba²⁺ across the membrane.

After application of Glu under conditions of DNP-induced depolarization of mitochondria and blockade of Na⁺/Ca²⁺-exchange and Ca²⁺ entry into endoplasmic

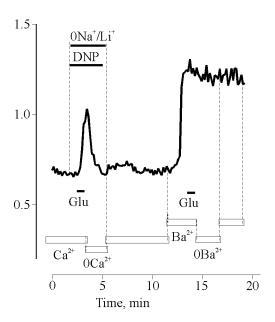


Fig. 1. Fluorescence F_{350}/F_{390} in cerebellar granular cells at rest in Ca²⁺- and Ba²⁺-containing medium. *a*) blockade of Na⁺/Ba²⁺-exchange by replacement of Na⁺₀ with Li⁺. 0Ba²⁺ denotes application of Ba²⁺-free saline with 200 μM EDTA (n=37 in 4 experiments). *b*) replacement of Ca²⁺ with Ba²⁺ under conditions of mitochondrial depolarization with dinitrophenol (DNP) and blockade of cytoplasmic exchange of Ba²⁺ for Na⁺₀ by replacement of Na⁺₀ with Li⁺ (n=27 in 3 experiments).

Fig. 2. Restoration of F_{350}/F_{390} fluorescence after exposure to K^+ (a) and Glu (b). a) replacement of Ca^{2+} with Ba^{2+} in the external medium (n=31); b) blockade of Glu-dependent Ca^{2+} channels with 25 μ M memantine and 75 μ M NBQX (mem+NBQX).

reticulum, only Ca²⁺-pump in plasmalemma remained active (Fig. 3). After 1-min application of Glu (20 μ M), rapid recovery of basal [Ca²⁺]_i level occurred in 70% cells (28 of 39). Since combined application of Glu and DNP decreased the content of ATP in neurons to 30% of the initial value [1], it can be suggested that the drop in ATP was most pronounced in those neurons (n=11), where Glu irreversibly enhanced [Ca²⁺]_i. In

Fig. 3. Recovery of basal $[Ca^{2^+}]_i$ in cerebellar cells (*n*=28) after exposure to 20 μM Glu (+10 μM glycine, 0Mg²⁺, 100 sec) under conditions of blockade of Na⁺₀/Ca²⁺_i-exchange by replacement of Na⁺₀ for Li⁺ and depolarization of mitochondria induced by dinitrophenol (DNP). All solutions contained 10 μM CPA, an inhibitor of Ca²⁺-ATPase in sarcoplasmic reticulum. After the first Glu application, Ca²⁺ was replaced with Ba²⁺.

those neurons where the basal level of $[Ca^{2+}]_i$ recovered, the replacement of Ca^{2+}_0 with Ba^{2+} resulted in a dramatic delay in extrusion of Ba^{2+} from cells after the action of Glu even in sodium saline where Na^{+}_{0}/Ba^{2+}_{i} exchange was possible (Fig. 3).

The present data suggest that Ca²⁺ pump of the plasma membrane plays the leading role in Ca2+ release from neurons after short-term application of K⁺ or Glu. Neither inhibition of Na⁺/Ca²⁺-exchange, nor block of Ca²⁺ uptake by mitochondria and endoplasmic reticulum disturbed recovery of the basal level of fluorescence in neurons to the same extent as replacement of Ca²⁺₀ with Ba²⁺. Therefore, the current view that the major work needed for Ca²⁺ release from the neurons after their stimulation is performed by Na⁺/ Ca²⁺-exchange, while Ca²⁺-pump is responsible only for "fine" adjustment of [Ca2+] near the resting value [3,5,11], was not supported in this study. Probably, only Na⁺/Ca²⁺-exchange can restore the basal level of [Ca²⁺]; after potent Glu shock in neurons with damaged Ca²⁺-ATP system. Evidently, Glu-induced increase in [Na⁺]_i, which persists for a long time after Clu application [10,13], inhibits Na⁺/Ca²⁺-exchange, which depends on sodium gradient across the membrane [5]. Under these conditions, Ca²⁺ is extruded by Ca²⁺ pump, which compensates dysfunction of other cellular systems responsible for the control of internal calcium level. Thus, Ca²⁺ overload after hyperstimulation of Clu receptors in neurons most probably results from disturbance in the work of plasma membrane Ca²⁺-ATPase.

This work was supported by the Russian Foundation for Basic Research (grant Nos. 99-04-49200, 99-04-49181).

REFERENCES

- B. I. Khodorov, T. P. Storozhevykh, A. M. Surin, et al., Biol. Membr., 18, 421-432 (2001).
- 2. P. Ascher and L. Nowak, J. Physiol., 399, 247-266 (1988).
- 3. M. P. Blaustein, TINS, 11, No. 10, 438-441 (1988).
- M. Condresku, G. Chernaya, V. Kalaria, and J. P. Reeves, J. Gen. Physiol., 109, 41-51 (1997).
- R. DiPolo and L. Beauge, *Biochim. Biophys. Acta*, **947**, 549-569 (1988).
- E. Graf, A. K. Verma, J. P. Gorski, et al., Biochemistry, 21, 4511-4516 (1982).
- 7. T. J. Grudt, M. M. Usowicz, and G. Henderson, *Brain Res. Mol. Brain Res.*, **36**, No. 1, 93-100 (1996).

- 8. B. Khodorov, V. Pinelis, V. Golovina, et al., FEBS Lett., 324, 271-273 (1993).
- B. Khodorov, V. Pinelis, O. Vergun, et al., Ibid., 371, 249-252 (1995).
- L. Kiedrowski, G. Brooker, and E. Costa, *Neuron*, 12, 295-300 (1994).
- 11. R. J. Miller, Progr. Neurobiol., 37, 255-285 (1991).
- 12. A. Ogura, M. Miyamoto, and Y. Kudo, *Exp. Brain Res.*, **73**, 447-458 (1988).
- 13. V. G. Pinelis, M. Segal, V. Greenberger, and B. Khodorov, *Biochem. Mol. Biol. Int.*, **32**, 475-482 (1994).
- B. Sutor and J. J. Hablitz, Neurosci. Lett., 157, 62-66 (1993).